International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Klein, A. W. \& Schrumpf, G. (1981). Acta Chem. Scand. Ser. A, 35, 425-430.
leung, P., Coppens, P., McMullan, R. K. \& Koetzle, T. F. (1981). Acta Cryst. B37, 1347-1352.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Palyi, G., Piacenti, F. \& Marko, L. (1970). Inorg. Chim. Acta Rev. 4, 109-121.

Patin, H., Mignani, G. \& van Hulle, M. (1979). Tetrahedron Letl. 26, 2441-2442.
Penfold, B. R. \& Robinson. B. H. (1973). Acc. Chem. Res. 6, 73-80.
Schmidt, G. (1978). Angew. Chem. Int. Ed. Engl. 17, 392-400.
Seidler, P. F., Bryndza, H. E., Fromer, J. E., Stuhl, L. S. \& Bergman, R. G. (1983). Organometallics, 2, 1701-1705.
Seyferth, D. (1976). Adv. Organomet. Chem. 14, 97-144.
Seyferth, D. \& Withers, H. P. (1983). Inorg. Chem. 22, 2931-2936.
Streitweiser, A. \& Heathcock, C. H. (1981). Introduction to Organic Chemistry, second edition, p. 84. New York: Macmillan.
Sutton. P. W. \& Dahl, L. F. (1967). J. Am. Chem. Soc. 89, 261-268.

Structure of Monoclinic Sodium (Ethylenediaminetetraacetato)holmate(III) Octahydrate, $\mathbf{N a}\left[\mathrm{Ho}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathbf{N}_{2} \mathrm{O}_{8}\right)\right] .8 \mathrm{H}_{\mathbf{2}} \mathrm{O}$: Disorder Induced by Radiation

By Lieselotte K. Templeton, David H. Templeton and Allan Zalkin
Materials and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, USA

(Received 25 September 1984; accepted 1 November 1984)

Abstract. $M_{r}=620.3$, monoclinic, $F d 11, \quad a=$ $19 \cdot 333$ (3),$\quad b=35 \cdot 366$ (6), $\quad c=12 \cdot 106$ (2) $\AA, \quad \alpha=$ $90 \cdot 40(10)^{\circ}, \quad V=8277 \cdot 0 \AA^{3}, \quad Z=16 \quad$ [conventional setting: $C c, \quad a=12.106(2), \quad b=19.333(3), \quad c=$ 18.650 (3) $\AA, \quad \beta=108.54(10)^{\circ}, \quad Z=81, \quad D_{x}=$ $1.991 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda\left(\alpha_{1}\right)=0.70930 \AA, \quad \mu=$ $39.7 \mathrm{~cm}^{-1}, F(000)=4924, T=294 \mathrm{~K}, R=0.026$ for 4843 reflections. The atomic positions are very similar to those in the analogous compounds of lighter lanthanoid elements which crystallize in the orthorhombic space group Fdd2. The monoclinic symmetry comes from ordering of water molecules in alternate sites which are occupied randomly in the orthorhombic structure. Exposure to X-rays induces disorder which makes the crystals more nearly orthorhombic. The Dy compound of the same composition is isomorphous with $a=19.358$ (3), $b=35.408$ (3), $c=12 \cdot 103$ (5) \AA, $\alpha=90.34(3)^{\circ}$.

Introduction. Crystal structure parameters were desired for the title salt,
so that it could be used to measure anomalousscattering terms for Ho at various wavelengths
(Chapuis, Templeton \& Templeton, 1985) by analysis of diffraction intensities. We had expected the crystals to have the orthorhombic structure with space group $F d d 2$ which has been reported for the analogous salts of $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$ and Er (Hoard, Lee \& Lind, 1965; Koetzle \& Hamilton, 1975; Nassimbeni, Wright, van Niekerk \& McCallum, 1979; Templeton, Templeton, Zalkin \& Ruben, 1982). Indeed, the diffraction patterns are very similar to those of the orthorhombic crystals, but close inspection reveals monoclinic symmetry with twice as large an asymmetric unit. We describe the structure in space group Fdll (an unconventional setting of $C c$) because that gives cell dimensions and atomic coordinates which are nearly the same as for $F d d 2$. We find the same monoclinic structure for crystals of the Dy compound, contrary to the findings of Nassimbeni et al. (1979). A recent neutron-diffraction study by Engel, Takusagawa \& Koetzle (1984) of the orthorhombic Sm compound found disorder of water molecules among two sets of sites. The monoclinic symmetry involves an ordering of the occupancy of these same sites.

Experimental. The compound was made from $\mathrm{Ho}_{2} \mathrm{O}_{3}$ (Research Chemical Corporation) dissolved in HCl and mixed with a hot solution of $\mathrm{Na}_{2} \mathrm{H}_{2}$ (edta). $2 \mathrm{H}_{2} \mathrm{O}$ (Aldrich Chemical Company); pH adjusted to about 5 with NaOH ; slow evaporation, then recrystallization
from water yielded crystals, many of which were twinned in a manner nearly to superimpose the reflections which are equivalent in orthorhombic symmetry (Dy compound made in the same way). Cell dimensions from 24 reflections in θ range 57 to 60° measured with CuKa and CAD-4 diffractometer. Another crystal $0.15 \times 0.24 \times 0.25 \mathrm{~mm}, 15$ faces. Picker FACS-I diffractometer. Cell dimensions from 12 reflections in θ range 20 to 22°. Analytical absorption correction $1.42<A<1.71$. Max. $(\sin \theta) / \lambda$ $=0.60 \AA^{-1} . h k l$ range 0 to $12,-42$ to $42,-14$ to 14 . 10% intensity-decay correction based on average of the changes of $400(14 \%), 5 \overline{5} 5(2 \%)$, and $0 \overline{4} 4(13 \%) .4977$ unique reflections; 91 with $I<\sigma$ and 43 others with $(\sin \theta) / \lambda<0.11 \AA^{-1}$ given zero weight. Refinement started with known structure of Sm salt duplicated for monoclinic symmetry, refined on $F .24 \mathrm{H}$ atoms included in refinement with each thermal parameter equal to that of adjacent C atom and with distance restraints $\mathrm{C}-\mathrm{H}=1.00$ (5), $\mathrm{H}-\mathrm{H}=1.63$ (10), $\mathrm{C}^{\prime}-\mathrm{H}$ $=2.06(10), \mathrm{N}^{\prime}-\mathrm{H}=2.04(10) \AA\left(\mathrm{C}^{\prime}\right.$ and N^{\prime} next atoms in chain); water H atoms omitted. 330 parameters including $f^{\prime \prime}$ for Ho and anisotropic thermal parameters for Ho and water O atoms, but not counting those of H atoms. $R=0.026, w R=0.034, S=1.1$, $w=[\sigma(F)]^{-2}, p=0.05$ in calculation of $\sigma\left(F^{2}\right)$. Max. $\Delta / \sigma=0.16 .|\Delta \rho|_{\text {max }}=0.7 \mathrm{e} \AA^{-3}$. Max. correction for extinction 6% of $\underset{\text { max }}{ }$. Atomic f for $\mathrm{Ho}^{3+}, \mathrm{Na}^{+}, \mathrm{O}^{0.5-}$ (interpolated), and neutral $\mathrm{O}, \mathrm{N}, \mathrm{C}$, and H from International Tables for X-ray Crystallography (1974). Local unpublished programs and ORTEP (Johnson, 1965). Atomic parameters are listed in Table 1. For this setting the equivalent positions are: $x, y, z ; \frac{1}{4}-x, \frac{1}{4}+y$, $\frac{1}{4}+z$; plus the translations of the F lattice. The origin of this doubly polar space group was defined by placing the center of gravity of the two Ho atoms at $\left(x, \frac{1}{4}, 0\right)$ in order to reduce covariance terms and to improve convergence (Templeton, 1960). The correct absolute polarity is confirmed by the refinement of $f^{\prime \prime}$ for Ho to the positive value 4.92 (10) e/atom. Cell dimensions for Dy compound from 13 reflections, CAD-4, Mo $K \alpha$.*

Discussion. The structure consists of two formula units at positions which are related approximately by a transformation ($\frac{1}{2}-x, \frac{1}{2}-y, z$) which corresponds to a twofold axis in the c direction. Deletion of this symmetry element from Fdd2 lowers the space group to $F d 11$. For most of the atoms this relation is accurate to better than $0.2 \AA$, and the structure is hardly different from that found for the orthorhombic compounds of the lighter lanthanoid elements. The only major difference

[^0]Table 1. Atomic parameters

$B_{\mathrm{cq}}=\frac{1}{3}-\backslash_{i-j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
				B or
	x	${ }^{1}$	z	$B_{\text {eq }} \dagger\left(\dot{\AA}^{2}\right)$
Ho(1)	$0.08268(2)$	0.15544 (1)	-0.00108 (1)	1.55 (1) ${ }^{\text {t }}$
$\mathrm{Ho}(2)$	0.41843 (2)	0.34456	0.00108	$1.57(1)^{+}$
II(1)	0.1345 (3)	$0 \cdot 1100$ (2)	--0.1220 (4)	$2 \cdot 3(2) \dagger$
11(2)	0.1308 (3)	$0 \cdot 10709$ (14)	0.1208 (4)	$2 \cdot 1(2){ }^{+}$
$11(3)$	0.0014 (4)	0.09946 (13)	--0.0121 (4)	$2 \cdot 6(2)^{\dagger}$
If (4)	0.0289 (7)	0.1245 (4)	0.3801 (14)	14.1 (7) \dagger
115)	0.0615 (4)	0.0409 (2)	$0 \cdot 1002(5)$	3.9 (2) \dagger
11 (6)	0.1438 (6)	0.0988 (2)	0.5612 (9)	7.5 (3) \dagger
11:7)	$0 \cdot 1354$ (9)	0.18 .30 (3)	0.4503 (7)	11.6 (5) \dagger
H18)	0.0072 (6)	0.0509 (3)	0.2942 (8)	9.7 (4) ${ }^{+}$
II(9)	0.3656 (4)	0.3878 .3 (14)	-0.1232 (4)	2.6 (2) \dagger
11(10)	$0 \cdot 3694$ (4)	0.39352 (14)	0.1195 (4)	$2.4(2){ }^{+}$
11(1)	0.4962 (4)	0.40195 (13)	-0.0141 (4)	$2 \cdot 5(2) \dagger$
11(12)	0.4824 (5)	$0 \cdot 3903$ (3)	0.3226 (9)	7.7 (4) \dagger
11(13)	0.4374 (4)	$0 \cdot 4615$ (2)	$0 \cdot 1033$ (5)	$3.7(2)^{\dagger}$
H(14)	$0.3476(6)$	0.4025 (2)	0.5656 (9)	$7.8(4) \dagger$
H(15)	$0 \cdot 3851$ (5)	$0 \cdot 3232$ (2)	0.4567 (5)	$6 \cdot 0(3)^{+}$
II(16)	$0.4832(6)$	0.4746 (3)	$0 \cdot 3226$ (9)	$8 \cdot 5(4)^{\dagger}$
$\mathrm{Na}(1)$	$0 \cdot 1393$ (2)	0.13492 (9)	0.3115 (3)	3.84 (7)
N(1)	0.0553 (5)	$0 \cdot 2273$ (2)	$0 \cdot 0058$ (5)	$2 \cdot 0$ (1)
N(2)	0.1482 (4)	0.1922 (2)	-0.1603 (5)	1.9 (1)
$\mathrm{O}(1)$	0.0276 (3)	0.168 .32 (14)	0.0724 (4)	2.51(9)
$\mathrm{O}(2)$	0.0967 (3)	0.18267 (13)	0.1789 (4)	$2 \cdot 12$ (9)
O(3)	0.2013 (3)	0.16792 (13)	0.0299 (4)	$2 \cdot 30$ (9)
$\mathrm{O}(4)$	0.0174 (3)	$0 \cdot 16333$ (13)	-0.1622 (4)	1.95 (9)
$\mathrm{O}(5)$	-0.1011 (4)	$0 \cdot 2088$ (2)	0.1479 (6)	$4 \cdot 5$ (1)
$\mathrm{O}(6)$	0.1072 (4)	0.2319 (2)	0.2897 (5)	$3 \cdot 3$ (1)
$\mathrm{O}(7)$	$0 \cdot 3100$ (5)	$0 \cdot 1760$ (2)	-0.0271 (5)	3.7 (1)
$\mathrm{O}(8)$	0.0059 (4)	$0 \cdot 1708$ (2)	-0.3444 (5)	3.0 (1)
C(1)	0.0756 (5)	0.2464 (2)	$-0 \cdot 1000$ (7)	2.4 (2)
C(2)	0.1462 (5)	0.2337 (2)	-0.1359 (6)	2.3(1)
C(3)	0.0181 (6)	$0 \cdot 2327$ (2)	0.0212 (7)	$3 \cdot 2$ (2)
C(4)	0.0504 (5)	$0 \cdot 2007$ (2)	0.0866 (6)	$2 \cdot 6$ (1)
C(15)	0.0951 (6)	0.2441 (2)	$0 \cdot 1007$ (7)	$2 \cdot 6$ (2)
$C(6)$	$0.0992(5)$	0.2169 (2)	0.1979 (6)	2.0 (1)
C(7)	0.2220 (6)	0.1798 (2)	-0.1623 (6)	2.5 (1)
$C(8)$	0.2470 (6)	0.1743 (2)	. 0.0446 (6)	2.3(1)
$\mathrm{C}(9)$	0.1142 (5)	0.1832 (2)	-0.2663 (7)	$2 \cdot 7$ (2)
C(10)	0.0406 (5)	0.1723 (2)	-0.2570 (6)	$2 \cdot 1$ (1)
$\mathrm{Na}(2)$	0.3656 (2)	0.36895 (9)	0.3133 (3)	3.60 (7)
N(3)	0.4472 (5)	0.2724 (2)	0.0095 (5)	2.0 (1)
$N(4)$	0.3529 (4)	$0 \cdot 3056$ (2)	-0.1567 (4)	1.8 (1)
$\mathrm{O}(9)$	0.5293 (3)	$0 \cdot 33353$ (13)	0.0733 (4)	2.53 (9)
$\mathrm{O}(10)$	0.4052 (3)	$0 \cdot 31877$ (1.3)	0.1810 (4)	$2 \cdot 11$ (9)
O(11)	0.2991 (3)	$0 \cdot 33121$ (13)	0.0332 (4)	2.42 (9)
O(12)	0.4829 (3)	$0 \cdot 3,3606$ (13)	-0.1604 (4)	1.99 (9)
$\mathrm{O}(13)$	0.6037 (5)	0.2941 (2)	0.1490 (7)	$5 \cdot 3$ (2)
$\mathrm{O}(14)$	0.3965 (3)	0.2701 (2)	0.2957 (4)	$2 \cdot 9$ (1)
O(15)	0.1916 (5)	$0 \cdot 3210$ (2)	-0.0227 (5)	3.5 (1)
$\mathrm{O}(16)$	0.4931 (4)	$0 \cdot 3282$ (2)	-0.3434 (4)	3.0 (1)
C(11)	0.4271 (5)	0.2523 (2)	-0.0945 (6)	$2 \cdot 1$ (1)
C(12)	0.3557 (5)	0.2645 (2)	-0.1301 (6)	$2 \cdot 2$ (1)
C(13)	0.5218 (6)	0.2689 (2)	0.0244 (7)	3.1 (2)
C(14)	$0 \cdot 55.34$ (6)	0.3009 (2)	0.0879 (6)	2.7 (1)
C(15)	0.4100 (6)	0.2560 (2)	$0 \cdot 1055$ (7)	$2 \cdot 5$ (2)
C(16)	0.4031 (5)	$0 \cdot 2844$ (2)	0.2017 (6)	2.0 (1)
C(17)	$0.2798(6)$	$0 \cdot 3173$ (2)	-0.1562 (6)	2.5 (1)
C(18)	0.2543 (6)	$0 \cdot 32.32$ (2)	--0.0399 (6)	$2 \cdot 2$ (1)
C(1)	0.3869 (5)	$0 \cdot 3131$ (2)	-0.2625 (6)	$2 \cdot 6$ (1)
C(2))	0.4606 (5)	$0 \cdot 3264$ (2)	-0.2550 (5)	1.6 (1)

is in the locations and hydrogen bonding of a few of the water molecules. The above transformation fails by $0.46 \AA$ for the $W(7)-W(15)$ pair, $0.91 \AA$ for $W(4)-$ $W(12)$ and $1.07 \AA$ for $W(8)-W(16)$. The last two pairs correspond to those which are distributed randomly in alternate sites in the Sm structure, and designated as $4 B, 4 A$ and $8 B, 8 A$, respectively, by Engel, Takusagawa \& Koetzle (1984) in their neutron-diffraction study. In that work 18 hydrogen bonds were identified. Taking account of the half-occupancy of some sites, these become 28 distinct bonds in the monoclinic symmetry. We find exactly the same bonds, on the basis of O -atom positions, plus one more: $W(4)-W(14)=2.75(2) \AA$.

In the Sm salt the corresponding distance was found to be $3.04 \AA$, but an H atom [designated as ' $U(4 B)$ '] is pointed in about the right direction for such a bond. The network of bonds near the c axis, where the higher symmetry breaks down, is shown in Fig. 1. Water molecules $W(8)$ and $W(16)$, which are equivalent in $F d d 2$, form hydrogen bonds to $W(15)$ and $\mathrm{O}(5)$, atoms which are not equivalent even in chemical state. This unsymmetrical bonding pulls them and their neighbors away from locations which conform to the higher symmetry. The only other lack of Fdd2 symmetry in the topology of the bonds is in the chain $W(12)-$ $\mathrm{H} \cdots W(16)-\mathrm{H} \cdots W(8)-\mathrm{H} \cdots W(4)$, if the H atoms are assigned according to the neutron-diffraction study; an extra H atom on $W(4)$ is not involved in a bond.

Hydrogen-bond $\mathrm{O}-\mathrm{O}$ distances (deposited) range from 2.64 to $2.85 \AA$, except $W(8)-W(4)=2.88$ (2) and $W(12)-W(16)=2.98$ (1) \AA. These two bonds join the atoms which are most involved in the orderdisorder transition discussed below, and these distances may be affected by it.

Exposure to X-rays causes the unit-cell angle α to become more nearly equal to 90°, with insignificant

Fig. 1. Hydrogen bonding near the c axis. H atoms are shown at calculated positions. In the model for the radiation-induced disorder, some of the bonds to $\mathrm{O}(5)$ and $W(15)$ are broken, new bonds are formed to $W(7)$ and $O(13)$, and the average structure approaches orthorhombic symmetry with a twofold axis at the center of the figure.

Fig. 2. Coordination of $\mathrm{Ho}(1)$ and atomic labeling of its neighbors. Labels for the corresponding neighbors of $\mathrm{Ho}(2)$ are obtained by adding 2 for $\mathrm{N}, 8$ for O or water, and 10 for C .

Table 2. Neighbor distances (\AA) for holmium

Ho(1)	O(1)	$2 \cdot 353$ (6)	$\mathrm{Ho}(2) \mathrm{O}(9)$	2.348 (6)
	$O(2)$	$2 \cdot 391$ (5)	$\mathrm{O}(10)$	2.381(5)
	O(3)	2.365 (7)	$\mathrm{O}(11)$	2.387 (7)
	$\mathrm{O}(4)$	2.341 (5)	$\mathrm{O}(12)$	2.335 (5)
	II'(1)	2.387 (5)	- $\mathbf{H}^{\prime}(9)$	2.383 (5)
	H'(2)	2.444 (5)	. W ${ }^{\prime}(10)$	$2 \cdot 4.32$ (5)
	W(3)	2.531 (6)	W'(1)	$2 \cdot 53.3$ (6)
	N(1)	2.547 (6)	N(3)	$2 \cdot 613$ (6)
	N(2)	2.655 (6)	N(4)	2.667 (6)

changes in axial lengths. As noted above, the diffraction intensities tend to decrease, but not uniformly. At the end of the data collection α was $90 \cdot 28^{\circ}$. For another crystal, after much exposure to X-rays, α was $90 \cdot 1^{\circ}$. Values of 90.49 (1) and 90.45 (2) ${ }^{\circ}$ were measured for two other fresh crystals. We attribute these changes to the introduction of disorder in the hydrogen bonding, with an approach to the symmetry of the $F d d 2$ structure. Since our specimen suffered some damage in the course of the experiment, the results include the effects of some of this disorder, for example in the highly anisotropic thermal parameters for some of the water molecules.

Cell dimensions of the Dy compound (Abstract) show that it is also monoclinic. Numerous cell determinations of crystals of the Pr, Sm and Gd compounds gave angles very close to 90° and no indication of monoclinic symmetry. It is possible that different methods of crystallization would produce ordered specimens of these materials, or that the monoclinic structure occurs in salts which have not been studied carefully, particularly those of Tb and Er.

Each Ho^{3+} ion is complexed by six atoms from a single edta group and also three water molecules, as depicted for $\mathrm{Ho}(1)$ in Fig. 2. A similar drawing for $\mathrm{Ho}(2)$ is almost indistinguishable at this scale. Distances from each Ho atom to its nine neighbors, listed in Table 2, are similar to those reported for the orthorhombic crystals (Templeton, Templeton, Zalkin \& Ruben, 1982), but slightly smaller because of the lanthanoid contraction of ionic radius; on the average they are $0.027 \AA$ less than in the Gd salt. Bond distances within the edta moiety (deposited) are normal; the average values for the various chemical types of bond $\mid \mathrm{N}-\mathrm{C}=1.482(5), \quad \mathrm{C}-\mathrm{O}=1.252(4), \quad \mathrm{C}-\mathrm{C}=$ 1.505 (5) (ethylenediamine) and 1.510 (7) \AA (acetate)| agree within $0.006 \AA$ with averages from the Pr, Sm and Gd structures (Templeton et al., 1982).

We thank Mrs Helena Ruben for assistance in preparation of crystals and Drs Engel, Takusagawa and Koetzle for their results in advance of publication. This work was supported by the National Science Foundation under grant No. CHE-8217443 and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC0376SF00098.

References

Chapuis, G., Templeton, D. H. \& Templeton, L. K. (1985). Acta Cryst. In the press.
Engel, D. W., Takusagawa, F. \& Koetzle, T. F. (1984). Acta Crl'st. C40, 1687-1693.
Hoard, J. L., Lee, B. \& Lind, M. D. (1965). J. Aim. Chem. Soc. 87. 1612-1613.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Koetzle, T. F. \& Hamilton, W. C. (1975). Anomalous Scattering, edited by S. Ramaseshan \& S. C. Abrahams. pp. 489-502. Copenhagen: Munksgaard.
Nassimbeni, L. R., Wright. M. R. W.. van Niekerk, J. C. \& McCallum, P. A. (1979). Acta Cr!'st. B35, 1341-1345.
Templeton, D. H. (1960). Z. Kristallogr. 113, 234-240.
Templeton, L. K., Templeton, D. H., Zalkin, A. \& Ruben, H. W. (1982). Acta Cryst. B38, 2155-2159.

Structure of μ-Oxo-bis[(2-hydroxyethanesulfonato)triphenylantimony(V)], $\left[\mathbf{S b}_{2} \mathbf{O}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\right]$

By Hans Preut, Robert Rüther and Friedo Huber*
Lehrstuhl für Anorganische Chemie II, Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50. Federal Republic of Germany

(Received 1 April 1984; accepted 3 December 1984)

Abstract. $\quad M_{r}=972 \cdot 39$, monoclinic, $P 2_{1} / c, \quad a=$ 10.861 (4),$\quad b=19.916$ (6),$\quad c=9.075$ (4) $\AA, \quad \beta=$ $94 \cdot 15(5)^{\circ}, U=1958 \AA^{3}, Z=2, D_{x}=1.649 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu=1.56 \mathrm{~mm}^{-1}, \quad F(000)=$ $972, T=294$ (1) K. Final $R=0.032$ for 2727 unique observed X-ray diffractometer data. Two only slightly distorted trigonal-bipyramidal units $(\mu-\mathrm{O})-\mathrm{SbPh}_{3}-\mathrm{O}-$ $\mathrm{S}\left(\mathrm{O}_{2}\right) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}$ with O atoms in apical and C (phenyl) atoms in equatorial positions are linked via a linear $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge. The $\mathrm{Sb}-\mu-\mathrm{O}$ bond of 1.936 (1) \AA is rather short. The $\mathrm{Sb}-\mathrm{O}$ bond to the unidentately coordinated sulfonate group $[2 \cdot 276$ (4) \AA I appears to have appreciably high ionic character.

Introduction. The chemistry of triorgano-Group V element sulfonates is rather unexplored and structures of such compounds are unknown. We recently obtained for the first time, by reaction of $\mathrm{Ph}_{3} \mathrm{SbO}\left(\mathrm{Ph}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ with sulfonic acids in different solvents, antimony compounds which correspond to the formula $\left(\mathrm{Ph}_{3} \mathrm{SbO}_{3} \mathrm{~S} R\right)_{2} \mathrm{O}\left(\mathrm{HO}_{3} \mathrm{~S} R=\right.$ sulfonic acid $)$ having, according to spectroscopic data, an $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge. Compounds of the type $\left(R_{3} \mathrm{Sb} X\right)_{2} \mathrm{O}(R=$ organogroup, $X=$ anionic ligand) may have a bent $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge, as in $\left(\mathrm{Ph}_{3} \mathrm{SbN}_{3}\right)_{2} \mathrm{O}\left(\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}: 139.8^{\circ}\right.$, Ferguson \& Ridley, 1973), or a linear bridge as in $\left(\mathrm{Ph}_{3} \mathrm{SbOOC}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}$ (Starikova, Shchegoleva, Trunov \& Pokrovskaya, 1978). To obtain more facts about influences which determine the type of bridge in distiboxane and also to learn more about the coor-

[^1]0108-2701/85/030358-03\$01.50
dination of the sulfonate group with organoelement moieties (a field which has also been neglected) we started to determine the crystal and molecular structure of organoantimony sulfonates and report here the structure of $\left(\mathrm{Ph}_{3} \mathrm{SbO}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{O}$.

Experimental. $\left(\mathrm{Ph}_{3} \mathrm{SbO}_{3} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{O}$ crystallizes from a solution of 10 mmol isethionic acid and 10 $\mathrm{mmol} \mathrm{Ph}_{3} \mathrm{SbO}$ in 250 ml acetone after standing for 1 d . Crystal size $0.32 \times 0.29 \times 0.10 \mathrm{~mm}, \omega / 2 \theta$ scan, scan speed $0.04-0.01^{\circ} \mathrm{s}^{-1}$ in θ, Nonius CAD-4 diffractometer, graphite-monochromated Mo $K \alpha$ radiation; lattice parameters from least-squares fit with 25 reflexions in range $9.3 \leq \theta \leq 14.0^{\circ}$; three standard reflexions recorded every 4 h , only random deviations; 3799 reflexions, $1 \leq \theta \leq 25^{\circ}, \quad-10 \leq h \leq 10$, $0 \leq k \leq 23,0 \leq l \leq 12$; after averaging 3541 unique reflexions, 2727 with $I>3 \sigma(I)$, Lorentz-polarization correction and absorption correction via ψ scans; systematic absences: $(h 0 l) l=2 n+1$, ($0 k 0$) $k=2 n+1$, space group $P 2_{1} / c$; structure solution via Patterson function, ΔF syntheses and full-matrix least-squares refinements with anisotropic temperature factors for all non-H atoms; complex neutral-atom scattering factors from Cromer (1974) and Cromer \& Waber (1974). H atoms placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$) and not included in structure-factor calculation. Least-squares refinement based on F and 241 refined parameters, $R=0.032$, unit weights; max. Δ / σ for all parameters 0.02 , av. $<0 \cdot 00$; no significant features in final ΔF synthesis; programs: Enraf-Nonius $S D P$ (1978), ORTEP (Johnson, 1976) and POP1 (van de Waal, 1976).
(c) 1985 International Union of Crystallography

[^0]: * Tables of structure factors, anisotropic thermal parameters, H -atom coordinates, and bond distances have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39877 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: * To whom correspondence should be addressed.

